Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Environ Sci Technol ; 55(14): 9518-9526, 2021 07 20.
Article in English | MEDLINE | ID: mdl-33826304

ABSTRACT

The time trend of α- and γ-hexachlorocyclohexane (HCH) isomers in Lake Superior water was followed from 1986 to 2016, the longest record for any persistent organic pollutant (POP) in Great Lakes water. Dissipation of α-HCH and γ-HCHs was first order, with halving times (t1/2) of 5.7 and 8.5 y, respectively. Loss rates were not significantly different starting a decade later (1996-2016). Concentrations of ß-HCH were followed from 1996-2016 and dissipated more slowly (t1/2 = 16 y). In 1986, the lake contained an estimated 98.8 tonnes of α-HCH and 13.2 tonnes of γ-HCH; by 2016, only 2.7% and 7.9% of 1986 quantities remained. Halving times of both isomers in water were longer than those reported in air, and for γ-HCH, they were longer in water than those reported in lake trout. Microbial degradation was evident by enantioselective depletion of (+)α-HCH, which increased from 1996 to 2011. Volatilization was the main removal process for both isomers, followed by degradation (hydrolytic and microbial) and outflow through the St. Mary's River. Sedimentation was minor. Major uncertainties in quantifying removal processes were in the two-film model for predicting volatilization and in microbial degradation rates. The study highlights the value of long-term monitoring of chemicals in water to interpreting removal processes and trends in biota.


Subject(s)
Pesticides , Water Pollutants, Chemical , Hexachlorocyclohexane/analysis , Lakes , Pesticides/analysis , Water , Water Pollutants, Chemical/analysis
2.
Environ Pollut ; 268(Pt A): 115351, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33152634

ABSTRACT

We investigated the spatio-temporal trends of polycyclic aromatic compounds (PACs) deposition in the Athabasca Oil Sands Region (AOSR) between 2008 and 2017, and applied source apportionment tools to assess sources using snowpacks. Estimated PAC mass deposition was significantly correlated with crude oil production (R2 = 0.48, p = 0.03), and increased between 2008 and 2017. Loadings of alkylated PACs c1-, c2-fluorenes/pyrenes and c1-, c3-benzo[a]anthracenes/chrysenes/triphenylenes significantly increased at mid-field sites (25-50 km from central industrial reference site, AR6) (Mann-Kendall, p < 0.05) reflecting physical expansion of the AOSR. The distance from emission sources was important in the deposition of PACs, including the distance from AR6 (R2 = 0.69-0.91), nearest petcoke storage (R2 = 0.77-0.88), 0.89) and upgrader stack (R2 = 0.56-0.61). Source apportionment PAC distribution profiles of the source materials (petcokes, oil sand ores, road dust) did not show unique matching profiles with the snowpacks. However, the minimal presence of retene in petcokes and an abundance of benzo[ghi]fluoranthene in road dust was observed, and suggests potential for these compounds as chemical markers in distinguishing sources. Furthermore, correlations between PACs and selected metal(loid)s in the AOSR snowpacks were assessed to infer potential common sources. Significant positive (p < 0.05) correlations between metal(loid)s enriched in bitumen (vanadium, molybdenum, nickel) and PACs, at near to mid-field (0-50 km from AR6) sites suggests common sources or similar transfer and fate processes. The results of our study convey data necessary for monitoring studies in the constantly developing AOSR, advance our knowledge of PACs profiles in source materials (including the much less studied alkylated PACs and dibenzothiophenes), which will be valuable for other studies related to oil pollution, urban run-off and forest fires. PACs mass deposition increasing between 2008 and 2017 coincident with crude oil production, and retene and benzo[ghi]fluoranthene show potential in distinguishing AOSR sources.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Polycyclic Compounds , Alberta , Environmental Monitoring , Oil and Gas Fields , Organic Chemicals , Polycyclic Aromatic Hydrocarbons/analysis
3.
Environ Sci Technol ; 54(15): 9265-9273, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32635725

ABSTRACT

Winter snow from four glacial sites on Svalbard was analyzed for atmospheric deposition of 36 organochlorine pesticides (OCPs) and 7 industrial compounds (OCICs) by GC-high-resolution MS. Thirteen of the OCPs and all OCICs were detected at all sites. Sampling sites are 230 km apart from west to east, but are at varying elevations, ranging from 700 to 1202 m a.s.l. Total OCP flux was greater than total OCIC at all sites and was 5 times greater at Lomonosovfonna, and 3 times greater at Austfonna, the most easterly site. Chlorpyrifos dominated OCP flux at Lomonosovfonna (81.7 pg cm-2 yr-1) and Kongsvegen (60.6 pg cm-2 yr-1), and at Austfonna, but not at Holtedahlfonna where dieldrin dominated. trans-chlordane was a major contributor to OCPs. These three pesticides comprised at least 50% of total OCP at each site. OCIC flux was dominated by pentachloroanisole (PCA) at Lomonosovfonna (23.5 pg cm-2 yr-1) and Kongsvegen (14.1 pg cm-2 yr-1). PCA and hexachlorobenzene comprised at least 63% of all OCICs at each site. Air mass frequency from likely source areas showed that Austfonna had the most frequent long-distance air flow, but showed lower amounts of chlorpyrifos and PCA, suggesting local sources of these compounds to other sites.


Subject(s)
Air Pollutants , Hydrocarbons, Chlorinated , Pesticides , Air Pollutants/analysis , Environmental Monitoring , Hydrocarbons, Chlorinated/analysis , Ice Cover , Pesticides/analysis , Seasons , Snow , Svalbard
4.
Chemosphere ; 243: 125324, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31765903

ABSTRACT

During spring 2014 we collected annual surface snow from four glacial sites on Svalbard, an archipelago in the European Arctic. The sampling sites are 230 km apart from west to east, but are at varying elevations, affecting local atmospheric contaminant inputs. Samples were analyzed for 209 polychlorinated biphenyl (PCB) congeners. The western sites, Holtedahlfonna and Kongsvegen, had the highest ∑PCB flux (26.7 pg cm-2 yr-1 at Kongsvegen) while the lowest was at Lomonosovfonna, in central Svalbard (14.4 pg cm-2 yr-1). The greatest difference between sites was the trichlorobiphenyl homologue which was nearly four times greater at Kongsvegen than the eastern site at Austfonna. The most concentrated congeners at each site were PCB-52, 70 + 74, 95, 101, 110 comprising 32-39% of ∑PCB, similar to Clophen 40 which is comprised 27% of these congeners. Similar variance of these congeners in samples and Clophen 40 was verified by principal components analysis. Air mass back trajectories from likely source areas for all sites were similar, indicating no difference in frequency or distribution of PCB from long-distances, suggesting local PCB sources contributing to Kongsvegen. We found 2,3-DiCB (PCB-5) and 3,3'-DiCB (PCB-11) at all sites; neither was found in western commercial PCB mixtures. PCB-5 may be from the Russian PCB product "Trichlorobiphenyl" or is residue from production of pigment violet 23. PCB-11 may come from waste incineration in northern Europe containing various pigments. These results, in comparison to earlier data from Lomonosovfonna, suggest that PCB inputs are variable and are not declining over time.


Subject(s)
Air Pollutants/chemistry , Environmental Monitoring , Polychlorinated Biphenyls/analysis , Snow/chemistry , Arctic Regions , Europe , Ice Cover , Incineration , Russia , Seasons , Svalbard
5.
Environ Sci Technol ; 53(24): 14377-14386, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31808337

ABSTRACT

Concurrent sampling of freshwater (lakes and rivers), seawater, snow, air, and zooplankton for a range of legacy polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) was undertaken in the Canadian High Arctic during ice-covered, melting, and ice-free conditions. Overall, there was a general trend of higher fluvial PCB/OCP concentrations associated with the spring snow melt (early-mid June), while much lower concentrations were detected during the snow-free season (end of July). In contrast, PCB concentrations in two Arctic lakes (West and East Lakes, Melville Island) and in ocean waters, sharply increased in the ice-free period, likely because of inputs from the ice/snow layer melting and river runoff. The resulting air-water fugacity ratios and fluxes followed a remarkable shift during the sampling campaign. PCBs and OCPs shifted from equilibrium during ice/snow-covered conditions toward a clear net volatilization of PCBs and most of the OCPs during snow/ice-free conditions. Differences in the bioaccumulation factor for PCB/OCPs in zooplankton between West and East Lakes were observed, likely because of zooplankton being exposed to more contaminated food in West Lake due to higher turbidity related to in-lake disturbances.


Subject(s)
Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Arctic Regions , Canada , Environmental Monitoring , Islands , Lakes , Oceans and Seas , Rivers , Snow
6.
Environ Toxicol Chem ; 38(6): 1198-1210, 2019 06.
Article in English | MEDLINE | ID: mdl-30901092

ABSTRACT

The trophic magnification of polybrominated diphenyl ethers (PBDEs) and selected nonlegacy halogenated organic compounds (HOCs) was determined in the food web of Lake Ontario (ON, Canada). In all, 28 Br3 -Br8 -PBDEs and 24 HOCs (10 of which had not been targeted previously) were analyzed. Average concentrations of Σ28 PBDEs in fish ranged between 79.7 ± 54.2 ng/g lipid weight in alewife (Alosa pseudoharengus) and 815 ± 695 ng/g lipid weight in lake trout (Salvelinus namaycush). For invertebrates, concentrations were between 13.4 ng/g lipid weight (net plankton; >110 µm) and 41.9 ng/g lipid weight in Diaporeia (Diaporeia hoyi). Detection frequency (DF) for HOCs was highest for anti-Dechlorane Plus (anti-DDC-CO), 1,3-diiodobenzene (1,3-DiiB), tribromo-methoxy-methylbenzene (ME-TBP), allyl 2,4,6-tribromophenyl ether (TBP-AE), pentabromocyclododecene (PBCYD), α+ß-tetrabromocylcooctane (TBCO), 2-bromoallyl 2,4,6-tribromophenyl ether (BATE), and pentabromotoluene (PBT; DF for all = 100% in lake trout). Tetrabromoxylene (TBX), dibromopropyl 2,4,6-tribromophenyl ether (TBP-DBPE), and syn-DDC-CO were also frequently detected in trout (DF = 70-78%), whereas 2,3,4,5,6-pentabromoethyl benzene (PBEB) was detected only in plankton. Several HOCs were reported in aquatic biota in the Great Lakes (USA/Canada) for the first time in the present study, including PBCYD, 1,3DiiB, BATE, TBP-DBPE, PBT, α + ß-TBCO, and ME-TBP. The Br4-6 -BDEs (-47, -85, -99, -100, -153, and -154) all had prey-weighted biomagnification factors (BMFPW ) values >6, whereas BMFPW values for Br7-8 -BDEs were <1. The highest BMFPW values of non-PBDEs were for TBP-DBPE (10.6 ± 1.34) and ME-TBP (4.88 ± 0.60), whereas TBP-AE had a BMFPW value of <1. Significant (p ≤ 0.05) trophic magnification factors (TMFs), both positive and negative, were found for Br4-8- BDEs (BDE 196 = 0.4; BDE 154 = 9.5) and for bis(2,4,6-tribromophenoxy)ethane (BTBPE; 0.53), PBCYD (1.8), 1,3-DiiB (0.33), and pentabromobenzene (PBB; 0.25). Food chain length was found to have a significant influence on the TMF values. Environ Toxicol Chem 2019;38:1198-1210. © 2019 SETAC.


Subject(s)
Environmental Monitoring , Flame Retardants/analysis , Hydrocarbons, Halogenated/analysis , Lakes/chemistry , Animals , Bioaccumulation , Ecosystem , Food Chain , Geography , Ontario , Plankton/metabolism , Trout/metabolism , Water Pollutants, Chemical/analysis
7.
Environ Sci Technol ; 53(6): 2981-2989, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30741540

ABSTRACT

Polycyclic aromatic compounds (PACs) can have multiple sources in the Athabasca Oil Sands Region (AOSR). The current study was designed to identify and explore the potential of nitrogen heterocyclic PACs (NPACs) as source indicators in snowpack, lake sediment and passive air samples from the AOSR during 2014-2015. Source samples including petroleum coke (petcoke), haul road dust, and unprocessed oil sands were also analyzed. Samples were analyzed using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry, and liquid chromatography-high resolution Orbitrap mass spectrometry. Over 200 NPACs were identified and classified into at least 24 isomer groups, including alkylated carbazoles, benzocarbazoles, and indenoquinolines. Levels of NPACs in environmental samples decreased with distance from the main developments and with increasing depth in lake sediments but were detected within 50 km from the major developments. The composition profiles of several NPAC isomer classes, such as dimethylcarbazoles, showed that petcoke had a distinct distribution of NPACs compared to the haul road dust and unprocessed oil sands ores and was the most similar source material to near-field environmental samples. These results suggest that petcoke is a major contributing source for the identified NPACs and that these compounds have the potential to be used as source indicators for future research in the AOSR.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Snow , Alberta , Environmental Monitoring , Nitrogen , Oil and Gas Fields
8.
Environ Sci Technol ; 52(5): 3136-3145, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29320633

ABSTRACT

The trophodynamics of halogenated flame retardants (HFRs) including polybrominated diphenyl ethers (PBDEs) and alternative HFRs were investigated in the terrestrial, vegetation-caribou-wolf food chain in the Bathurst Region of northern Canada. The greatest concentrations in vegetation (geometric mean of lichens, moss, grasses, willow, and mushrooms) were of the order 2,4,6-tribromophenyl allyl ether (TBP-AE) (10 ng g-1 lw) > BDE47 (5.5 ng g-1 lw) > BDE99 (3.9 ng g-1 lw) > BDE100 (0.82 ng g-1 lw) > 1,2,3,4,5-pentabromobenzene (PBBz) (0.72 ng g-1 lw). Bioconcentration among types of vegetation was consistent, though it was typically greatest in rootless vegetation (lichens, moss). Biomagnification was limited in mammals; only BDE197, BDE206-208 and ∑PBDE biomagnified to caribou from vegetation [biomagnification factors (BMFs) = 2.0-5.1]. Wolves biomagnified BDE28/33, BDE153, BDE154, BDE206, BDE207, and ∑PBDE significantly from caribou (BMFs = 2.9-17) but neither mammal biomagnified any alternative HFRs. Only concentrations of BDE28/33, BDE198, nonaBDEs, and ∑PBDE increased with trophic level, though the magnitude of biomagnification was low relative to legacy, recalcitrant organochlorine contaminants [trophic magnification factors (TMFs) = 1.3-1.8]. Despite bioaccumulation in vegetation and mammals, the contaminants investigated here exhibited limited biomagnification potential and remained at low parts per billion concentrations in wolves.


Subject(s)
Flame Retardants , Reindeer , Wolves , Animals , Arctic Regions , Canada , Environmental Monitoring , Food Chain , Halogenated Diphenyl Ethers
9.
Chemosphere ; 193: 343-350, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29149710

ABSTRACT

The large surface area of Lake Victoria (about 68,800 km2) makes it vulnerable to high atmospheric deposition of chemical pollutants. We present measurements of polychlorinated biphenyls (PCBs) from the lake's atmospheric environment. High volume air (24 h) samples were collected within the northern Lake Victoria watershed in Uganda over two periods; 1999-2004 [at Kakira (KAK) and Entebbe (EBB)] and 2008-2010 (at EBB only). Precipitation samples were also collected monthly during the 2008-2010 period at EBB. Analysis for PCBs was done using GC-µECD in a dual column approach. The ranges of ΣPCB concentrations in the KAK air samples were 154-462 pg m-3 (KAK 1999-2000), 26.7-226 pg m-3 (KAK 2003-2004), 27.0-186 pg m-3 (EBB 2003), 46.8-174 pg m-3 (EBB 2004), 19.2-128 pg m-3 (EBB 2008), 45.8-237 pg m-3 (EBB 2009) and 65.6-244 pg m-3 (EBB 2010). The di-, tri-, tetra- and penta-PCBs were predominant in air sample sets while the tetra- and penta-PCBs were predominant in precipitation samples. The mean flux of ΣPCBs in the precipitation samples was 26.9 ng m-2 (range of 14.8-41.5 and median of 27.5). Concentrations at EBB were lower than those reported elsewhere for urban sites in the East and Central African region. Multivariate analysis and analysis of air mass movements suggested influence of combustion sources on the PCB profiles from the region, especially, from the major East African urbanized regions.


Subject(s)
Air Movements , Air Pollutants/analysis , Lakes/chemistry , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Prevalence , Uganda
10.
Environ Monit Assess ; 188(9): 542, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27581009

ABSTRACT

Atmospheric deposition of polycyclic aromatic compounds (PACs) via and onto snow, and their releasing during spring snowmelt has been a concern in the Athabasca Oil Sands Region of Alberta. This study was designed to evaluate the concentrations, loadings, and distribution of PACs in springtime snowpack and how they have changed since the first study in 2008. Snowpack samples were collected in late winters 2011-2014 at varying distances from the main developments. PAC concentration and deposition declined exponentially with distance, with pyrenes, chrysenes, and dibenzothiophenes dominating the distribution within the first 50 km. The distribution of PACs was different between sites located close to upgraders and others located close to mining facilities. Overall, PAC loadings were correlated with priority pollutant elements and water chemistry parameters, while wind direction and speed were not strong contributors to the variability observed. Total PAC mass deposition during winter months and within the first 50 km was initially estimated by integrating the exponential decay function fitted through the data using a limited number of sites from 2011 to 2014: 1236 kg (2011), 1800 kg (2012), 814 kg (2013), and 1367 (2014). Total loadings were estimated to have a twofold increase between 2008 and 2014, although the increase observed was not constant. Finally, kriging interpolation is presented as an alternative and more robust approach to estimate PAC mass deposition in the area. After a more intensive sampling campaign in 2014, the PAC mass deposition was estimated to be 1968 kg.


Subject(s)
Oil and Gas Fields/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Snow/chemistry , Alberta , Environmental Monitoring , Seasons
11.
Environ Sci Technol ; 50(15): 8001-9, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27348023

ABSTRACT

This study contributes new data on the spatial variability of persistent organic pollutants in the Indian-Pacific sector of the Southern Ocean and represents the first empirical data obtained from this region in 25 years. Paired high-volume atmospheric and seawater samples were collected along a transect between Australia and Antarctica to investigate the latitudinal dependence of the occurrence and distribution of legacy organochlorine pesticides (OCPs) and the current use pesticide chlorpyrifos in the Southern Ocean. Dissolved ΣHCH and dieldrin concentrations decreased linearly with increasing latitude from 7.7 to 3.0 and from 1.0 to 0.6 pg·L(-1), respectively. There was no consistent trend observed in the latitudinal profile of atmospheric samples; however, some compounds (such as dieldrin) showed reduced concentrations from 7.5-3.4 to 2.7-0.65 pg·m(-3) at the highest latitudes south of the Polar Front. Chlorpyrifos was found in samples from this area for the first time. Estimated air-seawater fugacity ratios and fluxes indicate a current net deposition between -3600 and -900, -6400 and -400, and -1400 and -200 (pg·m(-2)·d(-1)) for γ-HCH, dieldrin, and chlorpyrifos, respectively. These findings suggest that, under current climatic conditions, the Southern Ocean reservoir in the Indian-Pacific sector serves as an environmental sink rather than a source of OCPs to the atmosphere.


Subject(s)
Air Pollutants , Hydrocarbons, Chlorinated , Environmental Monitoring , Oceans and Seas , Pesticides , Seawater
12.
Environ Toxicol Chem ; 35(7): 1695-707, 2016 07.
Article in English | MEDLINE | ID: mdl-27027986

ABSTRACT

The distribution of current-use pesticides (CUPs) in seawater and their trophodynamics were investigated in 3 Canadian Arctic marine food chains. The greatest ranges of dissolved-phase concentrations in seawater for each CUP were endosulfan sulfate (less than method detection limit (MDL) to 19 pg L(-1) ) > dacthal (0.76-15 pg L(-1) ) > chlorpyrifos (less than MDL to 8.1 pg L(-1) ) > pentachloronitrobenzene (less than MDL to 2.6 pg L(-1) ) > α-endosulfan (0.20-2.3 pg L(-1) ). Bioaccumulation factors (BAFs, water-respiring organisms) were greatest in plankton, including chlorothalonil (log BAF = 7.4 ± 7.1 L kg(-1) , mean ± standard error), chlorpyrifos (log BAF = 6.9 ± 6.7 L kg(-1) ), and α-endosulfan (log BAF = 6.5 ± 6.0 L kg(-1) ). The largest biomagnification factors (BMFs) were found for dacthal in the capelin:plankton trophic relationship (BMF = 13 ± 5.0) at Cumberland Sound (Nunvavut), and for ß-endosulfan (BMF = 16 ± 4.9) and α-endosulfan (BMF = 9.3 ± 2.8) in the polar bear-ringed seal relationship at Barrow and Rae Strait (NU), respectively. Concentrations of endosulfan sulfate exhibited trophic magnification (increasing concentrations with increasing trophic level) in the poikilothermic portion of the food web (trophic magnification factor = 1.4), but all of the CUPs underwent trophic dilution in the marine mammal food web, despite some trophic level-specific biomagnification. Together, these observations are most likely indicative of metabolism of these CUPs in mammals. Environ Toxicol Chem 2016;35:1695-1707. © 2016 SETAC.


Subject(s)
Environmental Monitoring/methods , Pesticides/analysis , Seals, Earless/metabolism , Seawater/chemistry , Ursidae/metabolism , Water Pollutants, Chemical/analysis , Animals , Arctic Regions , Canada , Food Chain , Pesticides/metabolism , Water Pollutants, Chemical/metabolism
13.
Sci Total Environ ; 543(Pt A): 9-18, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26575633

ABSTRACT

The Lake Victoria watershed has extensive agricultural activity with a long history of pesticide use but there is limited information on historical use or on environmental levels. To address this data gap, high volume air samples were collected from two sites close to the northern shore of Lake Victoria; Kakira (KAK) and Entebbe (EBB). The samples, to be analyzed for pesticides, were collected over various periods between 1999 and 2004 inclusive (KAK 1999-2000, KAK 2003-2004, EBB 2003 and EBB 2004 sample sets) and from 2008 to 2010 inclusive (EBB 2008, EBB 2009 and EBB 2010 sample sets). The latter sample sets (which also included precipitation samples) were also analyzed for currently used pesticides (CUPs) including chlorpyrifos, chlorthalonil, metribuzin, trifluralin, malathion and dacthal. Chlorpyrifos was the predominant CUP in air samples with average concentrations of 93.5, 26.1 and 3.54 ng m(-3) for the EBB 2008, 2009, 2010 sample sets, respectively. Average concentrations of total endosulfan (ΣEndo), total DDT related compounds (ΣDDTs) and hexachlorocyclohexanes (ΣHCHs) ranged from 12.3-282, 22.8-130 and 3.72-81.8 pg m(-3), respectively, for all the sample sets. Atmospheric prevalence of residues of persistent organic pollutants (POPs) increased with fresh emissions of endosulfan, DDT and lindane. Hexachlorobenzene (HCB), pentachlorobenzene (PeCB) and dieldrin were also detected in air samples. Transformation products, pentachloroanisole, 3,4,5-trichloroveratrole and 3,4,5,6-tetrachloroveratrole, were also detected. The five most prevalent compounds in the precipitation samples were in the order chlorpyrifos>chlorothalonil>ΣEndo>ΣDDTs>ΣHCHs with average fluxes of 1123, 396, 130, 41.7 and 41.3 ng m(-2)sample(-1), respectively. PeCB exceeded HCB in precipitation samples. The reverse was true for air samples. Backward air trajectories suggested transboundary and local emission sources of the analytes. The results underscore the need for a concerted regional vigilance in management of chemicals.


Subject(s)
Air Pollutants/analysis , Atmosphere/chemistry , Environmental Monitoring , Pesticides/analysis , Africa, Eastern , Air Pollution/statistics & numerical data , Chlorobenzenes/analysis , Chlorpyrifos/analysis , Endosulfan/analysis , Hexachlorobenzene/analysis , Hexachlorocyclohexane , Lakes , Trifluralin/analysis
14.
Chemosphere ; 144: 1815-22, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26539705

ABSTRACT

Information on historical deposition of persistent organic pollutants (POPs) for African lakes is very limited. We investigated historical deposition trends and sources of POPs in sediment cores from Lakes Victoria (SC1), Bujuku (Buju2) and Mahoma (Maho2). The latter two lakes are situated in the Rwenzori mountain range in western Uganda. SC1 was taken from a central depositional area within the Ugandan part of the lake. Profiles in Buju2 and Maho2 were used as a reference for historical atmospheric deposition. For the post-1940 sediment deposits in SC1, average focusing factor-adjusted fluxes (FFFs) of ΣDDTs, polychlorinated biphenyls (ΣPCBs), hexachlorocyclohexanes (ΣHCHs) and chlordanes (ΣCHLs) were 390, 230, 210 and 120 ng m(-2) yr(-1). Higher fluxes of ΣDDTs, ΣPCBs, and ΣCHLs were observed in Buju2 and Maho2. The average FFF of HCB in Buju2 was the highest while the values for Maho2 and SC1 were similar. The endosulfan FFFs in SC1 were lower than in the alpine lake cores. Generally, Buju2 was a better reference for historical atmospheric deposition of POPs than Maho2 probably due to distortion of the latter's profile by Lake Mahoma's forested catchment. Profiles of p,p'-DDE, ΣCHLs and HCB in SC1 were consistent with atmospheric deposition while profiles of PCBs and HCHs were indicative of particle-bound loadings from additional sources. Profiles of endosulfans, DDTs, and chlordanes were consistent with influence of other factors such as anoxia, and dilution. Further studies of spatial resolution of historical deposition, especially in near-shore deposition areas of the lake are recommended.


Subject(s)
Endosulfan/analysis , Hydrocarbons, Chlorinated/analysis , Lakes/analysis , Water Pollutants, Chemical/analysis , Africa, Eastern , Endosulfan/history , Environmental Monitoring/history , History, 20th Century , History, 21st Century , Hydrocarbons, Chlorinated/history , Water Pollutants, Chemical/history
15.
Environ Sci Technol ; 49(23): 13787-97, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-25915412

ABSTRACT

Polychlorinated biphenyls (PCBs) continue to be contaminants of concern across the Great Lakes. It is unclear whether current concentrations are driven by ongoing primary emissions from their original uses, or whether ambient PCBs are dominated by their environmental cycling. Freely dissolved PCBs in air and water were measured using polyethylene passive samplers across Lakes Erie and Ontario during summer and fall, 2011, to investigate their spatial distribution, determine and apportion their sources and to asses their air-water exchange gradients. Average gaseous and freely dissolved ∑29 PCB concentrations ranged from 5.0 to 160 pg/m(3) and 2.0 to 55 pg/L respectively. Gaseous concentrations were significantly correlated (R(2) = 0.80) with the urban area within a 3-20 km radius. Fugacity ratios indicated that the majority of PCBs are volatilizing from the water thus acting as a secondary source for the atmosphere. Dissolved PCBs were probably linked to PCB emissions from contaminated sites and areas of concern. Positive matrix factorization indicated that although volatilized Aroclors (gaseous PCBs) and unaltered Aroclors (dissolved PCBs) dominate in some samples, ongoing non-Aroclor sources such as paints/pigments (PCB 11) and coal/wood combustion showed significant contributions across the lower Great Lakes. Accordingly, control strategies should give further attention to PCBs emitted from current use sources.


Subject(s)
Air Pollutants/analysis , Lakes/analysis , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Aroclors/analysis , Environmental Monitoring/methods , Great Lakes Region , Ontario , Seasons , Spatio-Temporal Analysis , Volatilization
16.
Environ Toxicol Chem ; 33(9): 1956-66, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24975230

ABSTRACT

The bioaccumulation of current use pesticides (CUPs) and stable isotopes of carbon and nitrogen were investigated in vegetation-caribou-wolf food chain in the Bathurst region (Nunavut, Canada). Volumetric bioconcentration factors (BCF(v)) in vegetation were generally greatest for dacthal (10-12) ≥ endosulfan sulfate (10-11) > ß-endosulfan (>9.0-9.7) ≥ pentachloronitrobenzene (PCNB; 8.4-9.6) > α-endosulfan (8.3-9.3) > chlorpyrifos (8.0-8.7) >chlorothalonil (7.6-8.3). The BCF(v) values in vegetation were significantly correlated with the logarithm of the octanol-air partition coefficients (log K(OA)) of CUPs (r(2) = 0.90, p = 0.0040), although dacthal was an outlier and not included in this relationship. Most biomagnification factors (BMFs) for CUPs in caribou:diet comparisons were significantly less than 1. Similarly, the majority of wolf:caribou BMFs were either significantly less than 1 or were not statistically greater than 1. Significant trophic magnification factors (TMFs) were all less than 1, indicating that these CUPs exhibit trophic dilution through this terrestrial food chain. The log K(OA) reasonably predicted bioconcentration in vegetation for most CUPs but was not correlated with BMFs or TMFs in mammals. Our results, along with those of metabolic studies, suggest that mammals actively metabolize these CUPs, limiting their biomagnification potential despite entry into the food chain through effective bioconcentration in vegetation.


Subject(s)
Food Chain , Pesticides/analysis , Reindeer/metabolism , Wolves/metabolism , Animals , Arctic Regions , Canada , Endosulfan/analogs & derivatives , Endosulfan/analysis , Endosulfan/metabolism , Environmental Monitoring , Nunavut , Pesticides/metabolism , Phthalic Acids/analysis , Phthalic Acids/metabolism
17.
Environ Sci Technol ; 48(16): 9315-24, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25019318

ABSTRACT

Polyethylene passive samplers were deployed during summer and fall of 2011 in the lower Great Lakes to assess the spatial distribution and sources of gaseous and freely dissolved organochlorine pesticides (OCPs) and their air-water exchange. Average gaseous OCP concentrations ranged from nondetect to 133 pg/m(3). Gaseous concentrations of hexachlorobenzene, dieldrin, and chlordanes were significantly greater (Mann-Whitney test, p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression implied that both cropland and urban areas within 50 and 10 km buffer zones, respectively, were critical parameters to explain the total variability in atmospheric concentrations. Freely dissolved OCP concentrations (nondetect to 114 pg/L) were lower than previously reported. Aqueous half-lives generally ranged from 1.7 to 6.7 years. Nonetheless, concentrations of p,p'-DDE and chlordanes were higher than New York State Ambient Water Quality Standards for the protection of human health from the consumption of fish. Spatial distributions of freely dissolved OCPs in both lakes were influenced by loadings from areas of concern and the water circulation patterns. Flux calculations indicated net deposition of γ-hexachlorocyclohexane, heptachlor-epoxide, and α- and ß-endosulfan (-0.02 to -33 ng/m(2)/day) and net volatilization of heptachlor, aldrin, trans-chlordane, and trans-nonachlor (0.0 to 9.0 ng/m(2)/day) in most samples.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Hydrocarbons, Chlorinated/analysis , Lakes/chemistry , Pesticides/analysis , Polyethylene/chemistry , Water Pollutants, Chemical/analysis , Animals , Environmental Monitoring/instrumentation , Great Lakes Region , Humans , Ontario , Seasons , Water Quality
18.
Environ Sci Technol ; 48(3): 1458-66, 2014.
Article in English | MEDLINE | ID: mdl-24400732

ABSTRACT

High volume air and precipitation samples were collected close to the shore of Lake Victoria at Entebbe, Uganda, between October 2008 and July 2010 inclusive. Polybrominated diphenyl ethers (PBDEs) and alternative flame retardants (AFRs) were analyzed by GC-MS. BDEs 47, 99, and 209 were the predominant PBDEs with mean concentrations (in air) of 9.84, 4.38, 8.27 pg m(-3) and mean fluxes in precipitation of 3.40, 6.23, and 7.82 ng m(-2) sample(-1), respectively. 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), and hexabromocyclododecane (HBCDD), anti- and syn-Dechlorane plus were detected at levels comparable with those of PBDEs. Both PBDEs and AFRs in air generally increased from 2008 to 2010. Elevated PBDE concentrations in air were associated with slow moving low altitude air masses from the region immediately adjacent to the lake, while low concentrations were mostly associated with fast moving westerly and southwesterly air masses. Analysis of the octa- and nona-BDE profiles suggested photolysis and pyrolytic debromination of BDE-209 in the air samples. The highly halogenated and most abundant PBDEs and AFRs in air also predominated in precipitation samples. This is the first study to report flame retardants in high volume air samples and precipitation in Equatorial Africa.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Lakes , Rain/chemistry , Water Pollutants, Chemical/analysis , Bromobenzenes/analysis , Hydrocarbons, Brominated/analysis , Uganda
19.
Environ Sci Technol ; 47(21): 12064-72, 2013.
Article in English | MEDLINE | ID: mdl-24073820

ABSTRACT

A 37 m deep ice core representing 1957-2009 and snow from 2009 to 2010 were collected on the Lomonosovfonna glacier, Svalbard (78.82° N; 17.43° E) and analyzed for 209 polychlorinated biphenyl (PCB) congeners using high-resolution mass spectrometry. Congener profiles in all samples showed the prevalence of tetra- and pentachlorobiphenyls, dominated in all samples by PCB-44, PCB-52, PCB-70 + PCB-74, PCB-87 + PCB-97, PCB-95, PCB-99, PCB-101, and PCB-110. The ∑PCB flux varied over time, but the peak flux, ∼19 pg cm(-2) year(-1) from 1957 to 1966, recurred in 1974-1983, 1998-2009, and 2009-2010. The minimum was 5.75 pg cm(-2) year(-1) in 1989-1998, following a 15 year decline. Peak ∑PCB fluxes here are lower than measured in the Canadian Arctic. The analysis of all 209 congeners revealed that PCB-11 (3,3'-dichlorobiphenyl) was present in all samples, representing 0.9-4.5% of ∑PCB. PCB-11 was not produced in a commercial PCB product, and its source to the Arctic has not been well-characterized; however, our results confirm that the sources to Lomonosovfonna have been active since 1957. The higher fluxes of ∑PCB correspond to periods when average 5 day air mass back trajectories have a frequency of 8-10% and reach 60° N or beyond over northern Europe and western Russia or the North Sea into the U.K.


Subject(s)
Polychlorinated Biphenyls/analysis , Air , Arctic Regions , Europe , Ice Cover , Russia , Snow/chemistry , Svalbard
20.
Environ Sci Process Impacts ; 15(12): 2304-11, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24158382

ABSTRACT

Current use pesticides (CUPs) have been detected in the Arctic, even though there are no direct sources and their long range atmospheric transport potential is generally lower than that of legacy pesticides. Data on the deposition of CUPs in the Arctic are required to assess the impact of their global usage and emission. In this study, selected CUPs were measured in the layers of a snow pit sampled on the Devon Ice Cap, Nunavut, Canada. The oldest sampled layers correspond to deposition from the early 1990s. Dacthal and endosulfan sulfate were most frequently detected, with peak deposition fluxes of 1.0 and 0.4 pg cm(-2) per year. While endosulfan sulfate was more abundant than its parent compounds in most years, endosulfan (sum of α and ß isomers) was predominant in 2003 and 2006, which together with air mass backward trajectories suggests a possible origin from ongoing use in Eurasia. The interannual variation in CUP deposition fluxes could not be explained with annual variations in the extent of air mass origin over agricultural lands, suggesting that other factors, such as the interannual variation in pesticide use, play a role in affecting the long range transport of CUPs to the Arctic. The very high variability in the concentrations of CUPs in the horizontal layers of Arctic ice caps is most plausibly explained by the highly episodic nature of long range atmospheric transport and deposition. While this strong influence of rare events limits the suitability of ice caps as reliable records of historical trends in Arctic contaminant deposition with annual resolution, the presence of concentration peaks in the ice record is proof of the possibility of such transport and deposition.


Subject(s)
Pesticides/analysis , Snow/chemistry , Arctic Regions , Atmosphere , Canada , Endosulfan/analysis , Gas Chromatography-Mass Spectrometry , Ice Cover , Phthalic Acids/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...